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Statistical mechanics of highly charged ion plasmas in local thermodynamic equilibrium
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The screened-hydrogenic average-atom model is well suited to describe multicharged ion plasmas in local
thermodynamic equilibriundLTE) for in-line plasma physics calculations. Using general principles of statis-
tical mechanics, this model is shown to be properly defined and thermodynamically consistent. The grand
canonical partition functio@ ¢ of the bound electrons is written as a multidimensional integral. Its saddle-point
evaluation gives the intuitive average-atom equations. Using this formalism, a method for accounting the
various ionization stages of a LTE plasma is proposed. It can be used to estimate the integer charge stage
distribution in this type of medium from any average-atom model. Once the model is well established, simpler
formulas, more suitable for fast computations, are derived in the framework of the classical theory of fluctua-
tions. Numerical results are presented and discu$SaM63-651X97)12006-3

PACS numbdps): 52.25.Kn, 52.25.Jm

I. INTRODUCTION tency is ensured by deriving it from a free energy but many
questions still remain unclear. Since we are dealing with in-

Hot and dense matter is of great importance in astrophyderacting electrons, what is the physical meaning of the frac-

conditions can be extremely diverse. The high temperaturQiraC statistics? What is the form of the one-electron shell

encountered in such systems is responsible for the |arg%nergies that should be used? What is the role of correlations

. ) ; i i ?
number of ion species that can be found simultaneously. Tha" orbital occupation numbers?

. . . - . This paper proposes another scheme for the screened-
stydy of the'F Spectroscopic properties and the'r.'meracuonﬁydrogenic average-atom model which is thermodynamically
with other microscopic entitieGatoms, electrons, ions. .)

. . Iyt . ... _consistent and allows us to evaluate the fractional distribu-
IS complex but central n estimating macroscopic quantitieg;, of jon states. In Sec. I, the requirement of thermody-
including thermodynamic datgressure and ener_gytrans- namic consistency for statistical mechanics of correlated
port coefficients(electrical and thermal conductivityand  gjectrons in the screening constant model is formulated. An
optical absorption coefficientopacities required to per- jntegral representation of the grand canonical partition func-
form accurate numerical simulations. tion Zg for bound electrons is proposed. Its evaluation be-
Only local thermodynamic equilibriufL. TE) plasmas are  comes possible using the standard saddle-point method. The
considered in this paper. In such media, the multiplicity ofsaddle-point equations are found to be the coupled nonlinear
available excited states makes explicit configuration account=ermi-Dirac equations defining the fractional occupations of
ing difficult or computationally impracticable. Statistical ap- the bound orbitals of the screened-hydrogenic average-atom
proaches must then be used. The basic idea is to study timodel. Closed forms for thermodynamic mean quantities
plasma using an “average atonj’1-5] which extends the such as mean occupancy, mean electronic energy, and popu-
Thomas-Fermi approadlé—11]. Its atomic structure is sup- lation correlations between bound electrons are then derived.
posed to represent the average electron populations of thEhe fraction of any integer ion stage and its mean orbital
plasma for a temperatufeand a density. Results obtained 0ccupancy can be evaluated from a simple modification of
with such a theory are very satisfying, but the thermody-Zc- This method can be applied to estimate the integer
namic consistency is sometimes questionaflg]. The charge stage distribution in plasmas from_ any average-atom
Stewart and Pyatt formalisfii3] is a typical example. These Model. In Sec. I, an analytical approximation #y is
authors brought a correction to the description of the microfound using the classical theory of fluctuations. This expres-
scopic properties of ions embedded in a plasma to study th&iOn allows fast computations of the mean value and standard

continuum lowering. Their formula is widely used in practi- eviation of any physical quantity which is an explicit func-

cal ionization and opacity calculations, but it is known to 10" Of the electron shell populations. In Sec. 1V, the formal-
; : : . ism is tested by comparison to theoretical results. The role of
lead to thermodynamically inconsistent results at high den-

sity [14]. The implementation of a model with such a draw- correlations on the variance of ionization is emphasized. The

back in simulati d hvsical ch influence of temperature, density, maximum principal quan-
ack n simulation codes may cause nonphysical Changes Wy, nymper necessary to truncate the grand canonical parti-

temperature for compressed mattgt5]. Finally, the on function, and pressure ionization model on the popula-

average-atom picture is too restrictive because it does nqfyn, fractions of the various ionization states is studied.
describe the various ionization stages whose spectral features

can be seen on experimental photoabsorption spgdita?). Il. FORMAL DEVELOPMENTS

For laser-plasma simulations, Zimmerman and More
[18,19 proposed a screened-hydrogenic average-atom
model. Their formalism is well suited for in-line calculations  Consider a one-component plasma as an ensemble of ion
of equation of state and opacity. Thermodynamic consisspheres of radiuR, determined by the mass densityf the

A. The plasma model
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plasma. Introducing the Avogadro numhaf, the atomic N+Z=2Z
particle densityn,, the atomic masm,, and the molar mass

A of the element, we have the identities: #RSn,=1, — A

n,=p/m,, and m,=A/N, leading to n,=pMNA. We Z=4m _A[(Vzm/BhZ)SFllz( 7). (4)
choose to describe in ion species embedded in a plasma by p

the knowledge of the electron occupancies oKits,, bound In situations where the configuration enefigly(P,)] is a

orbitals. Each orbitak (1<k=<Kp,,) has a degenerad)y  nonlinear function of theR,) (thus when we go beyond the
and an integer occupandyy . The superscript 0 means that ideal Fermi-Dirac gas the main difficulty in this approach is
we are dealing with the degeneracy of an isolated ion. Thehe calculation of the partition functiafig . A solution is to
reason for this convention will appear clearly in discussingfind an integral representation & . Its factorization be-
pressure ionization phenomefts|. comes possible at the expense of the introduction of auxiliary
The usual and proper way to analyze the thermodynamigariables. The saddle-point techniqi23—26 gives the
properties of equilibrium systems is to appeal to a partitionmain contribution to the integral and thus, a good approxi-
function. Deriving standard thermodynamic quantities frommation of the exact value d. The corrective terms can

it ensures thermodynamic consistency. Consider the systefAen be taken into account by perturbation around the saddle
defined by the electrons of th&;,, ion bound orbitals in the  point.

grand canonical ensemble. It is assumed that LTE is estab- |n the following, two expressions d&[(P,)] are consid-

lished among free electrons. Electron-electron bound-free ingred. The first one is a quadratic form in the orbital popula-
teractions are neglected. LEf(P,)] andD(p ) be, respec- tions. Mayer’s formuld1,2] is chosen. It is adapted to any
tively, the energy and the statistical weight of an electronicaverage-atom model when used in a second-order Taylor ex-
configuration Py). Introducing the binomial coefficient pansion in populations about some reference configuration
[27]. The second one results from describing the atomic
n
!

structure with the screened hydrogenic mod&@HM)
0
Dy is equal to: D(pk)=1'[|f;"l E:). The grand canonical

' [19,28. The partition function associated with the last form
is proved to possess its own integral representation. Thus
there is no need to develdf (P,)] around some particular
reference point. This fact is essential to prove that the

(n)_ n!
P/ pl(n—p)!

partition functionZg of the system of interest is screened-hydrogenic average-atom ma@&HAAM), origi-
K nally proposed by More and Zimmerman, is thermodynami-
Nl cally consistent.
Ze=3 D(Pk)eﬁ( E[(Pkﬂwk; Pk). (1) y
(P

B. Integral representation of Zg using Mayer’'s model

T the system temperatyreu is the chemical potent_iaL assumed to be written in the following forrfin atomic
whereas the surilp ) runs over the set of all the configu- ynijtg:

rations that can be constructed from tKg,,, orbitals. So

p? p? Dﬁ Kmax ka 1 Kmax
e mea”52pj=o”'Epkk:o"'EpK“’“:o' The grand poten- E:k21 pk( B |*5 > PPV, (5
max = kk'=1

tial Q, the mean energ¥, and the mean bound electron
numberN can then be deduced froff, using the relations Where Ey=—Z%/2nf and Vi, =(Zoy)/ng. The screening
[20-22 Zg=€" A2, constants ¢,,/) are independent of the configuratig8].
The electrostatic interaction matrix element potentisg ()
— (00) in Eq. (5) prevent us from factorizing . Using the notation
p, T

R @ pry P=2:r?lePkak, P, , wherePT is the line vector trans-
posed from the column vect® whose components are the

and populations of theK ., Orbitals,Zs is equal to

+uN. 3) Zg=2
pou (P

T
e~ (B2PTVP.

E—_[ﬂ(ﬁﬂ)

Kmax ( DE
= é}ﬁ

k=1

) e~ BE (Vi) — n)Py

Py

(6)
The thermodynamic limit is assumed, hence the use of the ) ) )
mass densityp instead of the volumeV of the system. Using a perturbative development with respect/4a,
Throughout this article, we will not mention the thermody- Green[2] showed that one can obtain the expression of the
namic variables kept constant when partial derivatives aréhean occupancy, of orbital k to lowest order, as first
performed. The chemical potential is determined by re- proposed by Mayer, and correct it to first order. A set of
quiring that the ion cell is neutral on the average. Introducingionlinear coupled equations has to be solved to find all the
the nuclear chargg of the element, the average ionization (P,). The correction tends to offer a better description of the
Z, and the Fermi-Dirac functiofF ,(7) (F.(7)=/5(x¥/1  statistical mechanics of a LTE plasma that goes beyond the

+e*~7)dx), u satisfies the equations;& Bu) independent particle approximatidi®, =D /{1+ exd B(Ey
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—w)1}). Wilson[27] has found a simple method to obtain the where X° satisfies the equationd®/dX)|yxo=0. Writing
Green'’s results without handling complex operators. We will9?S°= (92S/9X?) |0 and using the relation {tet@)det®)

extend it to the SHM.
Starting from Eq.(6), the key of the reduction oZg
comes from the identity23,29,3Q

dE(V_l) 1/2
T
e—(l/2)P BVP_ -

(27 B)"ma

X f dXmaxx @~ (L2XTIVTHBIX+PTX) ()

where [ dXmaxX meanstSinHka.
Zs becomes factorizable. Introducing the quantities

ek:Ek—7+7—M, 8
8 1

e Pk = m = fk , (9)
[ax)= 2 (10

Jde(27BV)'

1 . V*l Kmax 0
S(X)=5 X" — X+ > Di(ecter), (1D

2 B k=1
we find a closed form foZg

Zg= f [dX]e ASX, (12

=exp(— 3 Tr[IN(AB)]), with A=8V, B=p4°S, and AB
=AS° we find a practical formula foZg. It is approxi-
mately given bye 2" with

T In(AS%)]
28

Q°f depends orB and .. From Eqgs(5), (8), and(9) we find
the average-atom equations

Q=5+ (14)

= —u. (15

To go beyond this average-atom model and the related
independent electron description, the usual method is to ex-
press the configuration energy as a second-order Taylor ex-
pansion in occupation numbers about the average-atom con-
figuration. The quadratic term incorporates relaxation effects
and offers a better description of physics than the truncation
of the Taylor expansion after the linear term. Moreover, as
pointed out by Wilsor{27], it gives an opportunity to esti-
mate the thermodynamic mean quantities and correlations
between orbital populations that neither an average-atom
model nor brute force computation ¢f) permit.

The last step is to give the expression of the effective
grand potential)®™. Combining Eqs(8), (9), (11), and(15),
we find

The classical partition function of the ideal Fermi-Dirac
gas is obtained if all the\{,+) vanish.Zs is a continuous L Kmax
function with respect to the degeneraci&@j). We can then S(XO)=E[(N)]—u >, N
forget the superscript 0. With this new writing, we can treat k=1
formally fractional degeneracieP{) and include, by ana- K max
lytic continuation, the reduction of each maximal occupancy +ksT D D2 IN(fO)+(1—f)In(1— D).
due to plasma effects as proposed by Zimmerman and More k=1
[18]. This procedure is impossible if we stay with the origi- (16)
nal form (6) of Zs. The electrostatic interactions among the

electrons inside the atom do not disappear. They are takeg(x9) is the “classical” grand potential of the electrons of
into account by the tergX™(V™%/8%)X in Eq. (11). The  the K,,,, bound orbitals. We obtain the entropy of an ideal
interactions have been linearized using auxiliary integratiorEermi-Dirac gas with mean quantum state occupano‘i%)s (
variables. The energy is deduced from the energy of an isolated ion by

Th‘z sadldlle-p?]iptdnget?r?dfall?\{\r/]s tus to eSt(ijmzlgi Th'itsh " substituting the integer occupation numbers by the average-
procedure is justified by the fact that we are dealing wi e ; 0 :
partition function of a system at thermodynamic equilibrium.atom populations Ni) defined by Eq.(15). Note that we

Only a group of configurations contribute significantly to themUSt calculate the mean energy and the mean occupation
y agroup 9 9 y numbers with the formula$2) and (3) before identifying

discrete sum6). These configurations are those whose en- o N he f h d : "
ergy and orbital populations are close to the mean energll (N1 and Ny) to the former thermodynamic quantities.

and mean occupancies of the system. We dev&lof) in As mentioned by Wilsor{27], these manipulations are
Eq. (11) around its minimum up to the second order more rigorous than those using the method of expansion in
inverse temperaturg2], or Stirling’s approximation to the

configuration degeneracy and the continuum approximation
to perform discrete summatiof81]. Finally we see that no
X0 reference configuration whose occupation numbers are given
by an auxiliary average-atom model is needed. Our model is
(X=X%+. .., (13 thermodynamically self-consistent and the average-atom
X0 configuration is defined by the saddle-point equations. This

aS
S0 = S(X%) + (X=X ==

2

1 9°S
Z(X—=XN"T |
+2(X X)ax2
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fact will be of great importance in the case of the SHM. The Zv— —iZy

correction toS(LO) is obtained using Eq<8), (9), and(11).

Defining w2=[NY(D,—N{)/D,], we arrive at Ok — — 1 O - (22)
(BVB*S) o = (AS) o =V Bog + S .~ (17) *— %%

0 2, 2
Zg becomesZG=E(Pk)l'[KmaX(Dk)e‘ﬁ([ZkQ“k]‘M)Pk, which can

be rewritten using Eqg20) as
As in the SHM, an exact integral representation can be

C. Integral representation of Z¢ using the SHM

found for Zg. The SHM configuration energlg[(P,)] ex- Kmax DY
pression igin atomic unitg Ze= ( f dX, dYy
(P k=1
Kmax 72 w @~ ([YEBPI2NEI+iIXy Yy +iXiZi— BrPy) 22

EL(PO]== 2, 5.2 P .
k Let (xy) and theK,EaX dimensionaJ vectorg and a be, re-
spectively, x, =2, "o Xe, Z=(Z,...Z), and «a

Kmax . .
Z =7+ ax— D o P - (18) =(a,...,@). The right term can be factorized with the result
k'=1
. ) . e K K max iXT(Y+Z+&)
(o) is a set of screening constants independent of the 2= (277 max J d"maX dmaty e
electronic configuratiofn19,28,33. («,) are constants char- K
H 1 1+ H max
therlsuc of a SHM. The partition function for such a model « H [1+e—B(Yi/Zni—ixk/B—ﬂ)]DE_ 23
k=1
Kmax | 0 - The auxiliary variable number has been doubled due to
ze=>, 11 ( Pk)eﬁ(zk’Z“kWPk. (19  the chosen energy forii8). The interaction linearization is
(P k=1 1Tk ensured by théX'Z term. The one-electron patkinetic

energy—potential energy due to the attraction of the nugleus
Y2/(2n?) is separated from the electron-electron interaction
part, —i(xx/B). The electronic configurationP) has been
replaced by a physically less transparent configuration
< (Xk,Y,). For the same reasons given earlier, the superscript
li’fx P 2212 _ 1 K 0 of the degeneracies is deleted. Note that an integral repre-
L er Tk = T — Bpk) 1) f d"maxX sentation ofZg can be found with any term of the form

E[(P,)] is a cubic form in the occupation numbers, but a
quadratic form in the screened hydrogenic chargg$.(So,
the integral representation df; is obtained in two steps

II 2= PZ%, whereq is an even integer.

k=1 nk Before estimatingZg, it is convenient to change the
Kmax scale: X,—ZX/B8 and Yk—>Yk/Z Introducing &k
x [ e (VAXInBPI+ 240 =1,... Kma) Lk=1, &=(Z2YD)I(2n2) —i(x«/Z) — w, €°%k
k=1 =1/(1+eﬁek), and
Kmax _ 1 Uk:ka kzl!"'vaax
— (U)X (Nl BPy) K
kljl © . Fmax nﬁ vz f dimesY Uk=Yk, Kk=Kmpat 1., Kmax
H 2T ——
k=1 BPx dKmaxX dKmaxy
oo L LU= "2 e
x [1 e MYl Pe/md+iXci — (20)
k=1 Kmax

T @
The combination of these two integrals is ill defined because S(U)=iX (YHH Z " kgl Dilet @), (24
of the termsz, X, in the first identity. It is due to the sign of
the energy. AsZ¢ is analytic in the screened hydrogenic Zg readsZg=[[dUJe #%Y). The saddle- point method is
charges Z,), the minus sign is absorbed doing the transfor-used to evaluate it. We find thdt;~e ~A0 yith UO satis-
mation[23,26,3Q: Z,—iZ,. Formally, it is equivalent to fying (9S/9U)|U°=0, (9°S/9U?)|U°=AS°, and
proceeding on theZ) or on the screening constanis,{).
This last manipulation is justified by the fact that these co- TIn(AS")]
efficients are homogeneous functions of degree one in the 28 :
screened hydrogenic chard&s]. At the end of the calcula-
tion, the original real variables are recovered by making théNeglecting the electrostatic interactions between bound and

inverse analytic continuation free electrons, elementary algebraic manipulations show that

Qf=5U°% + (25)
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TABLE |. Coefficients of the matrixA S° for the SHM. D. Evaluation of thermodynamic quantities

P Koo _ To calculqte the mean occupancy, mean energy, mean or-
> B bital populations, and orbital occupation correlations, we
XX & Tk e must differentiate the grand potential with respecjut@and

#S szlgkk, B. We therefore need to know the expressions?Nﬂ/a,u
e i(a(k,— 2 Eﬁ) and of ﬁN‘k’/a,B. It is worth _mtrc_)ducmg the two matrices

K (wy) and (V). The matrixV is deduced from the con-

#S 80 (— Bzclfﬁ figuration energy by perforrr;ing second derivatives with re-

Nl —nkr( —nkrwk) spect to populations\» = d°E/[ P dP,,]). The notation

V(k’k,, means thav,, is calculated with the average-atom
configuration (\IE). The matrixw is constructed fronV and

. -5 0
the variables KI°), more relevant thanX?,Y?), are solu- (Nk)
tions of a system of nonlinear coupled equations which are

precisely the screened-hydrogenic average-atom equations 0 Skk
proposed by More and Zimmermah5,18| ok =BV ?k
Kmax R _
Zv=2+ay— 2, owePr NO(D—N?)
k k kgl kk" Tk wﬁ;: k k k . (28)
Dy
K max Zﬁ These notations apply both to Mayer's model and to the
E[(Pk)]:gl 2n? Pk SHM. In Mayer’s caseV is identical to the electrostatic

interaction matriq 28], as underlined by the notation. Using
Egs.(15) or (26), it can be shown that

o JE
&="p| _ "M
ﬁPk (NE) &Nk KEmax N
——=p (0 ik
(9[1/ K =1
o__ Dk
Ny=——. (26)
1+ ePe 0"NO Kmax 0
= E wil)kkrek,. (29)
Going back to the real axis to calculate the true physical k'=1

guantities just changes the energy sign. As all formulas st
formally the same, the inverse analytic continuation will be
omitted. The saddle-point equation interpretation is clear
The one-electron energies, which appear in the Fermi-Dira
factors, are the derivatives of the configuration endiggy.

aWith the chosen conventions, the system of equati@®
can be used for either the model (lslayer or SHM. We
how calculate mean occupancy, mean energy, orbital occu-
Batlon numbers, and correlations. We have to differentiate

eff 0
(18)]. The same result is obtained in Mayer's case. This the effective potenuaﬂ) with respect tqu. The first partS

point is crucial to ensure the thermodynamic consistency Oglves ‘950/3'“; 2 WNO In order to treat the second cor-
the model. More generally, equationg(dU)|,o=0 which  rection to O, we have to consider a symmetric, definite,
determine the saddle poitt® are known to be the mean- and positive matrlxX(t)l function of a parameter. From
field equationg25,34. Straightforward manipulations show d/dtTHINIX®)]}=Tr[X™*(dX/dt)(t)] and by using Eq€2),
thatS(U®), appearing in the effective grand poten@si™ is  (14), (25), (28), and(29), we find a closed form foN

the grand potential corresponding to the free energy origi-
nally proposed by Zimmerman and More

V.= J
Kmax 0 k_&N_E
SU9=2 | T NN
1 max
Kmax : - = 2 (U) kk’ Tr[(A§)7leASO]
+kBTk§‘, D{f2 In(f) + (21— f)In[(1— ) 7}. 2 k=1
=1
(27 Kmax
Z NO+ 8y (30)

We reco_g_nize the enerdiq. (18)] calculated with the popu-

lations (N}) and the entropy of an ideal Fermi-Dirac gas The only difference between the two models will be in the
[f0=1/(1+ ef’ek) Eq.(26)]. The AS? matrix coefficients are  calculation of the coefficients of the matidS° [Eq. (17) for
given in Table 1. Mayer’'s model and Table | for the SHMThe expression of
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TABLE Il. Gradient of AS® with respect to average-atom populatiomTf\X for the Mayer’'s model and

the SHM.
Jot . N0
INO a1 p
Mayer 9 NC
HAS e sul1- 2Ny BV,
ﬁNig K D)\ kk’
2| 7S B uc ( -2
(?Ng &Xké’Xk, 0 ZZ AT D)\
MHE d &ZS _iIBO-kk’ 0 ZNQ —
Eo > Z}\ 1—D— —wk,akr}\
&N)\ &Xk&Yk, o nk’ A
o #s ] B2 |80 20| 2N\ 27%2
O | 2| It g
(9N}\ _(7Yk(9Ykr ol N ﬂ N D)\ N

its gradientV,ASC for both models is in Table Il. The cal- ing with an ideal Fermi-Dirac gas. The exact partition func-
culation of the mean energy proceeds as above and we fintlon Z¢ of this system is known in closed form

E_Fr(NO Kmax
E_E[(Nk)]+M5N_+5E_ ZG: (Dk)e_ﬁ(ek_’u)pk (34)
K & &1\ Py
L i D€l TI(ASY) "V, AS?]. (31
OE=7 O e T - .
: 2k,k’:1( S €Tl “ which factorizes asZg=TI,">{1+e A4 ¥« In the

The orbital occupation number and correlation are usuall present case, the internal partition functicﬂ{\;' of an
P M-electron charge state Egz2(pk),YEE;";‘*('s:)e*B(Ek*“)Pk.

obtained by differentiation of a generating function
[21,26,3Q with respect to a source term. In our case, we mayThe symbolY indicates that the summation runs through
introduce a chemical potentigt, for each orbitalk. The those configurations that satisfy the constra“uﬁga"PﬁN.
quantities of interest are then obtained using We now face the difficulties generated by this constraint
which prevents the factorization &g [20,22. We recall

N.— _ﬂ that the difference between the canonical description and the
K Ik = grand canonical description are fluctuationdNgfwhich are
forbidden in the canonical case. The factorization of the
1 920 grand canonical partition function requires the use of a
ANVANy = — — ———— (32 Lagrange multiplierw, which is founda posteriorifrom the
B opyd g f= iy = AN — Kmaxp, (Pkya—Blec— )P
K= My = equationN= (1/Zg) (Z(p = ] Pk(Pk)e K“H). We now
with the result keep this same idea to deduZd from Z . The trick is to
o employ the identity
Ny=Ng+ 8y,
1 iT+ag
Ky TP dt eN=15y,. (35)
_ B —iT+ag
5N_k: - E Z (lx) 1)kk/Tr((ASO) le/ASO)
ot whereN is an integerpg a real, anddy o is Kronecker sym-
m=(w’1)kk/+correction. (33) bol. So, inserting this formula in E¢34), we find
The corrective term can be obtained by the same technique 1 im+ag Kmax
as above. gzm ~ o dt etNH [1+e e Ala#]Pk,
—im+ag k=1
(36)

E. Integer charge stage splitting

The aim of this section is to compute the abundance of a To go fromZg to Z(NB, we substitutex for w—t/B and
particular integer charge state and to find its mean orbitaintegrate the modified partition functiafy(t) for each value
population humbers from minor manipulations of the grandof N. In order to understand more precisely the signification
canonical partition functioZ . If the electrostatic interac- of Eq.(36), we change the variable of integration introducing
tions among the bound electrons are neglected, one is dea:- z=e™". In the complex plane, we find



3480 G. FAUSSURIER, C. BLANCARD, AND A. DECOSTER 56

K .
1 dz max 1 J”’”o et
Ne = @ —r -~ Blek— 1) Dk Z8=-— dt eiNe A7, 39
Z8=5— fﬁ ot [ [1+ze P« @7 SarTE N (39
or . .
The fraction(percent F; ) of N-electron speciefcharge
K max state —N)] is then straightforward to compute since
Zs(z)= [ [1+ze Alex= w7k
k=1
Z3
v 1 dVZg Fz-m=7 (40)
G:m dN (38) G
: z=0

This result is quite obvious becaugd) is a polynomial [N the same spirit we have direct access to the mean
of degreeN with respect to the quantitigge™ Ak #)]. orbital population numbers oN-electron ions. It is a

. . H H H AN
ZN is the Nth-order term of the Taylor expansion gf;(z)  Simple | applllcanon of the general formula:N,
around the origin. For Mayer's model or the SHM, we have=(1/8Z¢)(9Zg/ )|, = - FOr an ideal Fermi-Dirac gas,
for 2§ we obtain

) K
+ max
o [ e D T e e e
k=1

2T Jin-a 1+e'eflar)
N= > (41)
k= N
Zg
|
and for any other case Kna
ZG:XJ‘ deaxPe_.B{E[(Pk)]_TS_MEkzlek}
i eff
_ 1 tmteo etNa e~ B0
— 217 Jin-ag Mkl = :f dKmap g~ BAU(PW] (43)
Nj = N . (42
Zg

. . . where« means “up to a normalizing factor.” The saddle
Those mt_egrals can be evaluated numerically or using thﬁoint is then used to approximate the integral. Sificis the
saddle-point method. effective potential without the traditional corrective terms, it

reaches precisely its minimum for the saddle-point deter-
lIl. APPROXIMATE DEVELOPMENTS USING THE mined by the average-atom equaﬁ@gz/apdm—g):o]. As
CLASSICAL THEORY OF FLUCTUATIONS thermodynamic equilibrium is assumed, we just have to con-
The former developments are of limited practical interestsider a second-order Taylor expansiorfbfLet us introduce
for in-line calculations because we need to handle multidi-APy=P,— NE andwkk,=/3((729)/(aPk(9Pk,)|(N_ck)); elemen-
mensional integrals where the explicit orbital populationstary algebraic manipulations show thask: = (Vi /kgT)
P,) are replaced with abstract variables. We could general-, —2\ i —2_ g0 NO :
i(zek)this a proach to calculate the thermodynamic rgnean o+(-5k-k//wk) With i =[Ni(Di~Ni/Did. The symmetric,
PP y definite, positive matrixo is identical to the previous one

any physical quantity. The saddle-point method offers Eq.(28)]. W hat th il i
valuable estimate of such integrals but finding the sadd%n?t'yg c?lz]én ;g;(rjg:ii tc gr:ngE rg;%?;;’(;'?gj(ung;n% ized to

point requires the time consuming solution of nonlinear

coupled equations. An alternative is to use of a simplified detw) |12
version of the grand canonical probability density. The clas- dp= (—K) dKmaxA P (12APTwAP (44)
sical theory of fluctuationg22] is well suited in this case to (277) " max

tackle this problem. We just recall the principal steps which

have been presented in detail elsewH@®&31,35. The first ~ Since the corrective terms in the effective grand potential
step is to replace the discrete summatiah by a multidi- have implicitly been neglected, the average-atom configura-
mensional integral. In doing so, th®|) are preferred to the tion (NE) is precisely equal to the mean orbital occupations
aforementioned auxiliary variables. They are supposed to b@\,) and from nowNE: N,=P,. Equation(44) is of con-

real and take all possible values frofm to +. Starting  siderable interest for in-line calculations, especially in esti-
from Eq. (1), writing the statistical weight of a configuration mating the population distribution around their averages to
ase¥*s, and using Stirling’s formula to compute each bino- improve the spectral opacity constructed with the average-

mial factor we obtain S=—kBE|f;“§>[Pkln(Pk/Dk)+(Dk atom configuration only. Introducing the correlation matrix

—PYIn([D—P/Dy] and C defined byCy,»=AP APy, it is easy to show22] that
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Cre =(0 D . The matrixw is not diagonal with respect

to the occupation numbers and we see clearly that the elec- dP= E
trostatic interactions \{,,s) induce correlations between
them. Let us discuss the expression of the correlation matrix
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Kmax
maxAPe(l/Z)APTwAP(S( E APk—AZ'),
k=1
(46)

z'

coefficients with respect to temperature. At high temperature,

B tends to zero:

(OD
kgT— Wy

Correlations then become negligible and we have an ide

with = maXPkJrZ’ Z and X ma"P,@LZ Z. To achieve that
goal, a constramt is mtroduced in the partition function. The
ion orbital populations are fractional but their sum is neces-
sarily integer.AZ' meansZ—Z'. Normalizingd? to unity
and using the Fourier transformation of the Dirac distribution
to reduce the Gaussian integral on the populati@his,equal

Fermi-Dirac gas. On the contrary, correlations dominate at

low temperature:

Wy = IBka’_>Ckk, ~ kBT(V_l

kgT—0 kgT—0

kK -

Each coefficient ofC varies linearly withkgT near absolute

zero. Matter tends to freeze into the fundamental configura-
tion at the chosen density. Finally, the correlation matrix

coefficients depend explicitly onﬂf) and fluctuations are
maximal for half-occupied orbitals.

This correlation matrixC plays a crucial role in calculat-
ing the fluctuations a physical quantifyaround its thermo-
dynamic meart? [{~{(0)]. Since thermodynamic equilib-
rium is assumed, these fluctuations are sriaH] and the
variancecr? of ¢ can be found rapidly. Starting from

Kmax

¢
dAPYI=LO0)+ 2 P OAPk+ e

anda§=[§[(A PO 1-2(0)]2, U? is approximately given by:

Kmax
oL a¢
2.
i~ > Cukr
C Ly JAP, 9APL |,

For example, let us choosg to be the ionization:{=Z
-3 maXPk £(0) is equal toZ and the ionization variance
a’%to

max

0'; 2 Ckk’ .

(49)

1y 2
(277)Kmax 12 o= U2AAZ'07)
z=2 ( : (47)
z' de(a)) 27T i

The ion fraction expressioftz, of the charge stat&’ is

e U2AAZ' 167)?

fZ/:?: —EZ,e—l/Z(AZ//(TEZ' (48)

The physical meaning of Eq48) is simply the quotient of

the internal partition functiorg?’ of the charge statg’ by

the total partition functiorZ. The classical theory of fluctua-
tions allows a fast evaluation of this term. It can be shown
[28] that Eq.(48) is closely linked to the couple of Eq&9)

and (40). This result is valid for the screened-hydrogenic
average-atom model or any average-atom model where a
second-order Taylor expansion in the occupation numbers is

performed. The mean orbital populat|orB () for an inte-
ger charge stat&’ can be computed as well. It is very im-
portant to remark that the positivity of these populations are
not granted for ion stages far from the average atom. Simi-
larly, the population of a nearly complete orbitgl can ex-
ceed the degenerady, . By definition

Py=2 FPE
Z/

pZ' _ 1 J dKmaxp pe- (128PTwAP
27

kk'=1 Kmax
. . . . . pn . >< 1 !

If we neglect correlations, which is justified at high tempera- 5( zl AP -4z ) Pi (49)
ture, we have an independent electron gas. Introduting
=Py /Dy, we then obtain the variance using the binomialand we find after some basic calculations that
d|str|but|on(r ~3 maXDkfk(l—fk).

In expre35|or(44) of dP, it is possible to reproduce the P —p.+ AZ' ay (50)
integer charge stage splitting. A very fast and simple evalu- Tk O%

ation of the detailed ionization stage accounting is possible.
Moreover, the thermodynamic mean and the variance of any maxs 1 i
physical quantity can be computed with an explicit referencéVith ax= Ek, 1(0 ke [see Eq(28)]. The computations are

to a particular integer ion stage. The dengit) is an ap- reasonably accurate for ion stages close to the average-atom

proximation of the true density probabilityor density ma-  charge. Note that the sum op_f') is equal to the charge
trix). In the evaluation oZ¢, the ion charges are betwegn i i Z—2'). The thermodynamic mea@z of a physical
andZ—2= maka It seems therefore natural to consider thequantltyg with respect to the integer ion stagé is given by
new probablhty densn)dP the expression



3482 G. FAUSSURIER, C. BLANCARD, AND A. DECOSTER 56

F T T T T ey T T T
12F E 141 ]
106 ® -- MSHM E — with correlations (a) A ]
+ a — NSHM 3 F -=- without correlations (b) i 1
8E 121 I .
t r i
N 6E r P
£ 107 \ 1oy 7
i r Pt ]
T C P ]
2 0.8+ Pl .
o= . - . ¢N [ i N 1
10 16" 10 10 0.61 | 3
b 1] 4
Temperature (eV) [ h ]
! ]
10 3 04r ! .
3 MSHM _§ :
NSHM 3 02r E
W~ _f 0 [ 4 = I NI EWTT ERTITP ET W
3 Ee E g - 0
E 10° 10* 10 10”7 10" 10° 10 10° 10° 10*
— Temperature (eV)
3 FIG. 2. Comparison between the standard deviation of ioniza-

10° tion with (a) and without(b) correlations of an aluminum plasma as
a function of temperature for a density of T0g/cnt.

Temperature (eV)

FIG. 1. Variations with temperature of the average ionizatwn ~advantage of the second one is the absence of correlations

and of the standard deviatiofp) of an aluminum plasma, for a Which can play an important role. We shall point out the

density equal to 10* g/cn?. The MSHM and the NSHMsee text  influence of temperature, density, and principal quantum

are considered. Ifb), the orbitals 3 and 3 are clearly distinct. number when truncating the partition function on the frac-
tions of the various ionization stages.

Kmax ’
—, — | AZ ey
VA
=+ —_—
=g gl P oL

A. Average and fluctuation ionization

The variations of the average ionizati@dhand the stan-

IV. NUMERICAL APPLICATIONS dard _deviation of ionizatipm;yvith_temperature of a !_TE
aluminum plasma are given in Fig. 1. A low density (

To illustrate the usefulness of the formulas established=10"* g/cn?) has been chosen in order to reduce pressure
above, we have chosen the screened-hydrogenic averagmization and to show atomic effects that a model degener-
atom to test some of them, and the classical theory of flucate with respect to the orbital quantum number ignores. Both
tuations to study statistical properties of LTE plasmas. Wenodels give the same results as faiZais concerned except
use the More’s screened-hydrogenic mo@dSHM) [19]  near 2 eV[Fig. 1(a)]. The ionization plateau, only present on
degenerate with respect to the orbital quantum nurhband  the NSHM curve, is due to the ionization of the ®rbital.

a new ongNSHM as new screened-hydrogenic mode@B]  More’s model is not able to predict it becausse &nd 3P
wherel is explicitly considered. We restrict ourselves to theorbitals are not distinguished. This effect is far more visible
nonrelativistic regime. The pressure ionization model takingn Fig. 1(b). When the temperature is not too low, each mini-
into account plasma effects is the version proposed by Zimmum of o7 means that a shell gets empty. So, on the NSHM
merman and Morgd18] with az, and bz, equal, respec- curve, the plateaus near 2 eV and 6 eV correspond, respec-
tively, to 3 and 1 in order to match zero-temperaturetively, to the 3 and 3 orbitals. At high temperature, both
Thomas-Fermi ionization at high densitp£) and solid models give the same results. The energy splitting of orbitals
density (o= po). with same principal quantum number is small compared to

The first application of our method is the calculation of kT so that these orbitals are populated according to their
the average ionization of a LTE plasma. The fluctuationsstatistical weights. Since the electrostatic interactions be-
around average ionizatiah are estimated, drawing the im- tween the electrons inside the atom become much less than
portance of correlations between orbital occupation numberkgT, we have an independent particle gas in this temperature
The fast estimate of the integer charge stage distribution in domain.

LTE plasma, which is a direct consequence of the generali- lonization standard deviation gives valuable physical in-
zation of the screened-hydrogenic average-atom model, hdsrmations concerning the integer charge stage distribution
never been tackled to our knowledge, except through tharound the average atom, and also on the occupancy orbital
standard Saha-Boltzmann equations, or methods resting arumbers. This point is quite clear when the correlation ma-
binomial manipulation§36,37. The drawback of the first trix w expression is considered. To be more precise, let us
one is the inherent arbitrary selection of configurations tdook at Fig. 2 wheréi) we have reproduced the NSHM curve
calculate the internal partition function of a particular ion (with correlationg of Fig. 1(b), (ii) we have included its
stage and its problematic use at high dengif§]. The dis- uncorrelated counterpafiw is diagonal. The temperature



56 STATISTICAL MECHANICS OF HIGHLY CHARGED ICN . .. 3483

TABLE lIl. Integer charge state distribution of an aluminum plasffia 40 eV, p=1.35x 10" 2 g/cnt)
and an iron plasmér=25 eV, p=1.35< 10 2 g/cn?). We have emboldened the dominant charge states.

o Aluminum Iron
Average ionization Z) 7.036 7.227
lonization standard deviatioru§) 0.849 0.888
Charge state Fractiof®o)
4 7.87x 1072 6.11x 102
5 2.65 1.94
6 22.33 17.30
7 46.95 43.48
8 24.65 30.75
9 3.23 6.12
10 0.11 0.34

domain ranges from very low temperatures i@V to tion termsV;; close to the average electrostatic interaction
10* eV. At sufficiently high temperature, it is not surprising potentials between electrons. The correlations come from the
to see that the two curves are identical. The main difference¥;j Which are positive since they represent the repulsive elec-
are for intermediate and low temperatures. At zero temperarostatic interaction between electrdnandj. So, neglecting
ture, the system lies in its ground state configuration athe V;; amounts to underestimate the configuration energy
10 4 g/len?. So, the absence of interactions between theand, hence, to overestimate each Boltzmann factor in the
electrons keeps7 finite, except in situations where all the partition function. A far more important number of configu-
shells are either empty or full. Note that due to the pressuré&ations around the average-atom configuration would then
ionization model o7 tends to 1.004 instead af5/6 (0.913, contribute and increase the dispersion around the reference

one electron in the 8 orbital). o7 without correlations is ~ Point.
always greater thaa; with correlations. The difference can
exceed a factor 10. Neglecting correlations in the calculation B. Detailed ionization stage accounting

of a thermodynamic average amounts to use a patrtition func-
tion in which the configuration energies are linearized with  In this section, we study the estimate of the integer charge

respect to populations around the average-atom configuratistate distribution in the plasma. We first consider the influ-
(or another reference pojnExpansion up to second order in ence of correlations and second the role of temperature and
populations is required to introduce the electrostatic interacmaximum principal quantum number, in the case of alumi-
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FIG. 3. Comparison of the integer charge state distributions with and without correlations for two plasrasninum (T=40 eV,
p=1.35x10 2 g/cn?) and(b) iron (T=25 eV, p=8.10x 10 3 glcnt).
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FIG. 4. Comparison of the integer charge state distributions with and without correlations for an iron pesga 102 g/cnt) for
four temperatures 25 e¥4), 50 eV (b), 100 eV (c), and 300 eV(d).

num and iron. This gives us the opportunity to compare oucharge states in the wings, the dominant charge state fraction
formalism to more detailed calculatioh38,39. can be reduced by a factor two. This is understood in terms
In Table llI, the ion fractions estimated from E(8) of ionization standard deviation. We recall the values of
for two LTE plasmas of aluminuml7,39,4Q (T=40 eV, these for the aluminum and iron plasmas respectively: with-
p=1.35x10"2 g/ent) and iron [41] (T=25 eV, out correlations we find 1.351 and 1.634, and with correla-
p=8x10"2 g/cnt) are given. For the case considered, onlytions 0.849 and 0.888. So there is a factor of 2 between the
a few charge states dominate in the plasma. In both cases, thgo situations. The differences depend on the element and
distributions are quite similar and we find only three mainthe thermodynamic conditions. In particular, an interesting
ion species. In order to see the influence of correlations, wphenomenon can be observed in the iron case. The initial
plot the former distributions where correlations are includeddensity (p=8x10"2 g/cn?) is kept but three other tempera-
together with the uncorrelated ones. The results are displayddres are considered: 50 eV, 100 eV, and 300 eV. We add to
in Fig. 3. As expected, the distributions without correlationsthese three examples the 25 eV plasma and plot them in Fig.
have the largest variance. Due to the contributions of theél. The curves with and without correlations tend to merge
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FIG. 5. Comparison of the ionization standard deviations with  FIG. 7. Integer charge state distribution of an aluminum plasma
(&) and without(b) correlations of an iron plasma as a function of (p=1.35x10 2 g/cnt). We adopt the notations proper to atomic
temperature g=8x 10" g/cn). structure to label the different ion stages. For exampié,is the
fluorinelike charge state.
when the temperature is high enough. The calculations are . )
equivalent at 100 eV because the shell is just becoming Our calculations are compared to Fig. 2 of RiH9]. At a
empty. Examination of Fig. 5 is instructive enough. Even atdiven temperature, the NSHM predicts an ionization higher
200 eV we are below the temperature edge becausé the than that obtained by Kilcreaset al. [39]: the NSHM
shell is half-empty and the standard deviations with ancfurve is shifted near the left by about 6 eV. Again in this
without correlations are notably different, explaining the de-model, the dispersion of the maxima is more pronounced
viations between the two curves of Fig. 6. than that in Ref[39]. It is especially thg case _for the charge
Before concluding this paper, we compare our model conStates nean shell closure((He]- and[Li]-like ions for the
cerning the aluminum plasma to more elaborate calculation&¢ shell,[O]-, [F]-, and[Nel-like ions forL shel). The un-
From a detailed atomic physics data base, Abdallah angertainty may arise froni) the screening constantsi) the
Clark[38] have computed the evolution of the integer chargeStatistical method we usedjii) the pressure ionization
state distribution of a LTE aluminum plasma with tempera-model, and(iv) the maximum quantum numbef,, chosen
ture from 20 eV to 100 eV4=1.35x 10" 2 g/cn?). In Fig. 7 tO truncate the partition function. Since the calculations of
Abdallah and Clark38] did not account for pressure ioniza-
tion, we performed a new set of calculations neglecting pres-

ST ] sure ionization(so azy=bzy,=0) and changing,.,. The

. ] results for the four cases are plotted in Fig. 8. We see that the
a5t - vinesiois ] integer charge state distribution depends stronglyngg,.
40k -¢- viocorsuns | Whenn,,,, increases, the excited configurations, due to their

statistical weight, tend to play an increasingly important role,

35T i ] even the most improbable ones. They make the partition

- 30k "‘-.‘ E function diverge whem,,,, goes to infinity. This effect tends
% AN ] to flatten the arches. We note that the distribution of Kil-
g Bf E creaseet al. lies between the graphs,,=4 andn,=6.
£ g0b 3 With the ionization pressure model, the distribution is stable
E ) 3 and independent af ;.. We know that this is the formula-
15t E

' \ tion which allows a physical truncation of the partition func-
1of & P 3 tion, bound electrons going continuously into the continuum
] within a thermodynamically consistent average-atom model.

DT S V. CONCLUSION AND PERSPECTIVES

The screened-hydrogenic average-atom model used to de-
Charge state scribe highly charged ions in LTE plasmas is well under-
stood and thermodynamically consistent. The grand canoni-
FIG. 6. Comparison of the integer charge state distributionscal internal partition functioiZ of the bound electrons has
with and without correlations for an iron plasm@=200 eV, an exact integral representation when the total ion energy is
p=8x10"3 glcn?®). expresed using the screened-hydrogenic madglis esti-
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FIG. 8. Integer charge state distribution of an aluminum plasmal(35x 102 g/cnT). We vary the maximum principal quantum
numbern.: (@ Npa=10, (b) NHa=8, (€) Npa=6, and(d) Npa=4-

mated with the saddle-point method. Straightforward differ-distribution from Zg is proposed. The classical theory of
entiations with respect to the chemical potenfiabnd the fluctuations has been used in order to have more practical
inverse temperatur@ leads to the mean bound electron num-formulas for in-line calculations. The rapid estimate of the
ber and to the mean electronic energy. The equations whiciean and variance of any physical quangfyexplicit func-
determine the saddle point are identical to the traditional selion of the orbital occupation numbers, becomes possible.
of nonlinear coupled equations dealing with average-atord his formalism has been applied using More’s screened hy-
populations P,) and Fermi-Dirac statistics. To first order, drogenic model and the new screened-hydrogenic model.
the electron populations are equal to the thermodynamic The authors thank Drs. P. Dallot and F. Perrot for their
mean orbital populations. A method, which can be extendedomments and suggestions concerning the final form of the
to any average-atom model, for calculating the charge statmanuscript.
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