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Statistical mechanics of highly charged ion plasmas in local thermodynamic equilibrium

G. Faussurier, C. Blancard, and A. Decoster
Commissariat a` l’Energie Atomique, Centre d’Etudes de Limeil-Valenton, 94195 Villeneuve Saint-Georges Cedex, France

~Received 29 August 1996; revised manuscript received 26 December 1996!

The screened-hydrogenic average-atom model is well suited to describe multicharged ion plasmas in local
thermodynamic equilibrium~LTE! for in-line plasma physics calculations. Using general principles of statis-
tical mechanics, this model is shown to be properly defined and thermodynamically consistent. The grand
canonical partition functionZG of the bound electrons is written as a multidimensional integral. Its saddle-point
evaluation gives the intuitive average-atom equations. Using this formalism, a method for accounting the
various ionization stages of a LTE plasma is proposed. It can be used to estimate the integer charge stage
distribution in this type of medium from any average-atom model. Once the model is well established, simpler
formulas, more suitable for fast computations, are derived in the framework of the classical theory of fluctua-
tions. Numerical results are presented and discussed.@S1063-651X~97!12006-2#

PACS number~s!: 52.25.Kn, 52.25.Jm
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I. INTRODUCTION

Hot and dense matter is of great importance in astroph
ics and plasma laboratory physics where thermodyna
conditions can be extremely diverse. The high tempera
encountered in such systems is responsible for the la
number of ion species that can be found simultaneously.
study of their spectroscopic properties and their interacti
with other microscopic entities~atoms, electrons, ions, . . . !
is complex but central in estimating macroscopic quanti
including thermodynamic data~pressure and energy!, trans-
port coefficients~electrical and thermal conductivity!, and
optical absorption coefficients~opacities! required to per-
form accurate numerical simulations.

Only local thermodynamic equilibrium~LTE! plasmas are
considered in this paper. In such media, the multiplicity
available excited states makes explicit configuration acco
ing difficult or computationally impracticable. Statistical a
proaches must then be used. The basic idea is to study
plasma using an ‘‘average atom’’@1–5# which extends the
Thomas-Fermi approach@6–11#. Its atomic structure is sup
posed to represent the average electron populations o
plasma for a temperatureT and a densityr. Results obtained
with such a theory are very satisfying, but the thermod
namic consistency is sometimes questionable@12#. The
Stewart and Pyatt formalism@13# is a typical example. Thes
authors brought a correction to the description of the mic
scopic properties of ions embedded in a plasma to study
continuum lowering. Their formula is widely used in prac
cal ionization and opacity calculations, but it is known
lead to thermodynamically inconsistent results at high d
sity @14#. The implementation of a model with such a dra
back in simulation codes may cause nonphysical change
temperature for compressed matter@15#. Finally, the
average-atom picture is too restrictive because it does
describe the various ionization stages whose spectral fea
can be seen on experimental photoabsorption spectra@16,17#.

For laser-plasma simulations, Zimmerman and Mo
@18,19# proposed a screened-hydrogenic average-a
model. Their formalism is well suited for in-line calculation
of equation of state and opacity. Thermodynamic con
561063-651X/97/56~3!/3474~14!/$10.00
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tency is ensured by deriving it from a free energy but ma
questions still remain unclear. Since we are dealing with
teracting electrons, what is the physical meaning of the fr
tional occupations of the bound orbitals defined by Ferm
Dirac statistics? What is the form of the one-electron sh
energies that should be used? What is the role of correlat
on orbital occupation numbers?

This paper proposes another scheme for the scree
hydrogenic average-atom model which is thermodynamic
consistent and allows us to evaluate the fractional distri
tion of ion states. In Sec. II, the requirement of thermod
namic consistency for statistical mechanics of correla
electrons in the screening constant model is formulated.
integral representation of the grand canonical partition fu
tion ZG for bound electrons is proposed. Its evaluation b
comes possible using the standard saddle-point method.
saddle-point equations are found to be the coupled nonlin
Fermi-Dirac equations defining the fractional occupations
the bound orbitals of the screened-hydrogenic average-a
model. Closed forms for thermodynamic mean quantit
such as mean occupancy, mean electronic energy, and p
lation correlations between bound electrons are then deri
The fraction of any integer ion stage and its mean orb
occupancy can be evaluated from a simple modification
ZG . This method can be applied to estimate the inte
charge stage distribution in plasmas from any average-a
model. In Sec. III, an analytical approximation toZG is
found using the classical theory of fluctuations. This expr
sion allows fast computations of the mean value and stand
deviation of any physical quantity which is an explicit fun
tion of the electron shell populations. In Sec. IV, the form
ism is tested by comparison to theoretical results. The role
correlations on the variance of ionization is emphasized. T
influence of temperature, density, maximum principal qu
tum number necessary to truncate the grand canonical p
tion function, and pressure ionization model on the popu
tion fractions of the various ionization states is studied.

II. FORMAL DEVELOPMENTS

A. The plasma model

Consider a one-component plasma as an ensemble o
spheres of radiusR0 determined by the mass densityr of the
3474 © 1997 The American Physical Society
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56 3475STATISTICAL MECHANICS OF HIGHLY CHARGED ION . . .
plasma. Introducing the Avogadro numberN, the atomic
particle densityna , the atomic massma , and the molar mass
A of the element, we have the identities: 4/3pR0

3na51,
na5r/ma , and ma5A/N, leading to na5rN/A. We
choose to describe in ion species embedded in a plasm
the knowledge of the electron occupancies of itsKmax bound
orbitals. Each orbitalk (1<k<Kmax) has a degeneracyDk

0

and an integer occupancyPk . The superscript 0 means th
we are dealing with the degeneracy of an isolated ion. T
reason for this convention will appear clearly in discuss
pressure ionization phenomena@18#.

The usual and proper way to analyze the thermodyna
properties of equilibrium systems is to appeal to a partit
function. Deriving standard thermodynamic quantities fro
it ensures thermodynamic consistency. Consider the sys
defined by the electrons of theKmax ion bound orbitals in the
grand canonical ensemble. It is assumed that LTE is es
lished among free electrons. Electron-electron bound-free
teractions are neglected. LetE@(Pk)# andD(Pk) be, respec-
tively, the energy and the statistical weight of an electro
configuration (Pk). Introducing the binomial coefficient

S n
pD F S n

pD5
n!

p! ~n2p!! G ,
D(Pk) is equal to: D(Pk)5Pk51

Kmax(
Pk

Dk
0

). The grand canonica

partition functionZG of the system of interest is

ZG5(
~Pk!
D~Pk!e

2bS E@~Pk!#2m(
k51

Kmax

PkD . ~1!

In this expression,b51/kBT ~kB is Boltzmann constant an
T the system temperature!, m is the chemical potential
whereas the sum( (Pk) runs over the set of all the configu

rations that can be constructed from theKmax orbitals. So

( (Pi )
means(

P150
D1

0

•••(
Pk50
Dk

0

•••(
PKmax

50

DKmax

0

. The grand poten-

tial V, the mean energyĒ, and the mean bound electro
numberN̄ can then be deduced fromZG using the relations
@20–22# ZG5e2bV,

N̄52S ]V

]m D
r,T

, ~2!

and

Ē5F]~bV!

]b G
r,m

1mN̄. ~3!

The thermodynamic limit is assumed, hence the use of
mass densityr instead of the volumeV of the system.
Throughout this article, we will not mention the thermod
namic variables kept constant when partial derivatives
performed. The chemical potentialm is determined by re-
quiring that the ion cell is neutral on the average. Introduc
the nuclear chargeZ of the element, the average ionizatio
Z̄, and the Fermi-Dirac functionFa(h) „Fa(h)5*0

`(xa/1
1ex2h)dx…, m satisfies the equations (h5bm)
by

e
g

ic
n

m

b-
n-

c

e

re

g

N̄1Z̄5Z

Z̄54p
A

rN ~A2m/bh2!3F1/2~h!. ~4!

In situations where the configuration energyE@(Pk)# is a
nonlinear function of the (Pk) ~thus when we go beyond th
ideal Fermi-Dirac gas!, the main difficulty in this approach is
the calculation of the partition functionZG . A solution is to
find an integral representation ofZG . Its factorization be-
comes possible at the expense of the introduction of auxil
variables. The saddle-point technique@23–26# gives the
main contribution to the integral and thus, a good appro
mation of the exact value ofZG . The corrective terms can
then be taken into account by perturbation around the sa
point.

In the following, two expressions ofE@(Pk)# are consid-
ered. The first one is a quadratic form in the orbital popu
tions. Mayer’s formula@1,2# is chosen. It is adapted to an
average-atom model when used in a second-order Taylor
pansion in populations about some reference configura
@27#. The second one results from describing the atom
structure with the screened hydrogenic model~SHM!
@19,28#. The partition function associated with the last for
is proved to possess its own integral representation. T
there is no need to developE@(Pk)# around some particula
reference point. This fact is essential to prove that
screened-hydrogenic average-atom model~SHAAM!, origi-
nally proposed by More and Zimmerman, is thermodynam
cally consistent.

B. Integral representation of ZG using Mayer’s model

The total energy of an electronic configuration (Pk) is
assumed to be written in the following form~in atomic
units!:

E5 (
k51

Kmax

PkS Ek2
Vkk

2 D1
1

2 (
k,k851

Kmax

PkPk8Vkk8 , ~5!

whereEk52Z2/2nk
2 and Vkk85(Zskk8)/nk

2. The screening
constants (skk8) are independent of the configuration@28#.
The electrostatic interaction matrix element potentials (Vkk8)
in Eq. ~5! prevent us from factorizingZG . Using the notation
PTVP5(

k,k851

Kmax PkVkk8Pk8 , wherePT is the line vector trans-
posed from the column vectorP whose components are th
populations of theKmax orbitals,ZG is equal to

ZG5(
~Pk!

F )
k51

Kmax S Dk
0

Pk
De2b„Ek2~Vkk/2!2m…PkGe2~b/2!PTVP.

~6!

Using a perturbative development with respect tobZ,
Green@2# showed that one can obtain the expression of
mean occupancyP̄k of orbital k to lowest order, as first
proposed by Mayer, and correct it to first order. A set
nonlinear coupled equations has to be solved to find all
( P̄k). The correction tends to offer a better description of t
statistical mechanics of a LTE plasma that goes beyond
independent particle approximation„P̄k5Dk

0/$11exp@b(Ek
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3476 56G. FAUSSURIER, C. BLANCARD, AND A. DECOSTER
2m!#%…. Wilson @27# has found a simple method to obtain th
Green’s results without handling complex operators. We w
extend it to the SHM.

Starting from Eq.~6!, the key of the reduction ofZG
comes from the identity@23,29,30#

e2~1/2!PTbVP5S det~V21!

~2pb!KmaxD 1/2

3E dKmaxXe2~@1/2#XT@V21/b#X1 iPTX!. ~7!

where*dKmaxX meansPk51
Kmax*RdXk .

ZG becomes factorizable. Introducing the quantities

ek5Ek2
Vkk

2
1

iXk

b
2m, ~8!

ebwk5
1

11ebek
5 f k , ~9!

@dX#5
dKmaxX

Adet~2pbV!
, ~10!

S~X!5
1

2
XT

V21

b2 X1 (
k51

Kmax

Dk
0~ek1wk!, ~11!

we find a closed form forZG

ZG5E @dX#e2bS~X!. ~12!

The classical partition function of the ideal Fermi-Dira
gas is obtained if all the (Vkk8) vanish.ZG is a continuous
function with respect to the degeneracies (Dk

0). We can then
forget the superscript 0. With this new writing, we can tre
formally fractional degeneracies (Dk) and include, by ana-
lytic continuation, the reduction of each maximal occupan
due to plasma effects as proposed by Zimmerman and M
@18#. This procedure is impossible if we stay with the orig
nal form ~6! of ZG . The electrostatic interactions among t
electrons inside the atom do not disappear. They are ta
into account by the term1

2 XT(V21/b2)X in Eq. ~11!. The
interactions have been linearized using auxiliary integrat
variables.

The saddle-point method allows us to estimateZG . This
procedure is justified by the fact that we are dealing with
partition function of a system at thermodynamic equilibriu
Only a group of configurations contribute significantly to t
discrete sum~6!. These configurations are those whose
ergy and orbital populations are close to the mean ene
and mean occupancies of the system. We developS(X) in
Eq. ~11! around its minimum up to the second order

S~X!5S~X0!1~X2X0!T
]S

]XU
X0

1
1

2
~X2X0!T

]2S

]X2U
X0

~X2X0!1• • •, ~13!
ll

t

y
re

en

n

e
.

-
gy

where X0 satisfies the equation (]S/]X)uX050. Writing
]2S05(]2S/]X2)uX0 and using the relation 1/Adet(A)det(B)
5exp„2 1

2 Tr@ ln(AB)#…, with A5bV, B5b]2S0, and AB
5DS0, we find a practical formula forZG . It is approxi-
mately given bye2bVeff

with

Veff5S01
Tr@ ln~DS0!#

2b
. ~14!

Veff depends onb andm. From Eqs.~5!, ~8!, and~9! we find
the average-atom equations

N̄k
05

Dk

11ebek
0

ek
05

]E

]Pk
U

~N̄
k
0!

2m. ~15!

To go beyond this average-atom model and the rela
independent electron description, the usual method is to
press the configuration energy as a second-order Taylor
pansion in occupation numbers about the average-atom
figuration. The quadratic term incorporates relaxation effe
and offers a better description of physics than the trunca
of the Taylor expansion after the linear term. Moreover,
pointed out by Wilson@27#, it gives an opportunity to esti-
mate the thermodynamic mean quantities and correlat
between orbital populations that neither an average-a
model nor brute force computation of~1! permit.

The last step is to give the expression of the effect
grand potentialVeff. Combining Eqs.~8!, ~9!, ~11!, and~15!,
we find

S~X0!5E@~N̄k
0!#2m (

k51

Kmax

N̄k
0

1kBT (
k51

Kmax

Dk@ f k
0 ln~ f k

0!1~12 f k
0!ln~12 f k

0!#.

~16!

S(X0) is the ‘‘classical’’ grand potential of the electrons o
the Kmax bound orbitals. We obtain the entropy of an ide
Fermi-Dirac gas with mean quantum state occupancies (f k

0).
The energy is deduced from the energy of an isolated ion
substituting the integer occupation numbers by the avera
atom populations (N̄k

0) defined by Eq.~15!. Note that we
must calculate the mean energy and the mean occupa
numbers with the formulas~2! and ~3! before identifying
E@(N̄k

0)# and (N̄k
0) to the former thermodynamic quantities

As mentioned by Wilson@27#, these manipulations ar
more rigorous than those using the method of expansio
inverse temperature@2#, or Stirling’s approximation to the
configuration degeneracy and the continuum approxima
to perform discrete summations@31#. Finally we see that no
reference configuration whose occupation numbers are g
by an auxiliary average-atom model is needed. Our mode
thermodynamically self-consistent and the average-a
configuration is defined by the saddle-point equations. T
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56 3477STATISTICAL MECHANICS OF HIGHLY CHARGED ION . . .
fact will be of great importance in the case of the SHM. T
correction toS(X0) is obtained using Eqs.~8!, ~9!, and~11!.
Defining v̄k

25@N̄k
0(Dk2N̄k

0)/Dk#, we arrive at

~bVb]2S0!kk85~DS0!kk85Vkk8bv̄k
21dkk8 . ~17!

C. Integral representation of ZG using the SHM

As in the SHM, an exact integral representation can
found for ZG . The SHM configuration energyE@(Pk)# ex-
pression is~in atomic units!

E@~Pk!#52 (
k51

Kmax Zk
2

2nk
2 Pk

Zk5Z1ak2 (
k851

Kmax

skk8Pk8 . ~18!

(skk8) is a set of screening constants independent of
electronic configuration@19,28,32#. (ak) are constants char
acteristic of a SHM. The partition function for such a mod
is

ZG5(
~Pk!

)
k51

Kmax S Dk
0

Pk
De2b~2Zk

2/2nk
2
2m!Pk. ~19!

E@(Pk)# is a cubic form in the occupation numbers, but
quadratic form in the screened hydrogenic charges (Zk). So,
the integral representation ofZG is obtained in two steps

)
k51

Kmax

ebPkZk
2/2nk

2
5

1

S )
k51

Kmax

2p
bPk

nk
2 D 1/2 E dKmaxX

3 )
k51

Kmax

e2~@1/2#Xk
2
@nk

2/bPk#1ZkXk!

)
k51

Kmax

e2~1/2!Xk
2
~nk

2/bPk!5
1

AS )
k51

Kmax

2p
nk

2

bPk
D 1/2 E dKmaxY

3 )
k51

Kmax

e2~@1/2#Yk
2
@bPk /nk

2
#1 iXkYk!. ~20!

The combination of these two integrals is ill defined beca
of the termsZkXk in the first identity. It is due to the sign o
the energy. AsZG is analytic in the screened hydrogen
charges (Zk), the minus sign is absorbed doing the transf
mation @23,26,30#: Zk→ iZk . Formally, it is equivalent to
proceeding on the (Zk) or on the screening constants (skk8).
This last manipulation is justified by the fact that these
efficients are homogeneous functions of degree one in
screened hydrogenic charges@33#. At the end of the calcula-
tion, the original real variables are recovered by making
inverse analytic continuation
e

e

l

e

-

-
e

e

Zk→2 iZk

skk8→2 iskk8 . ~21!

ak→2 iak

ZG becomesZG5( (Pk)Pk51
Kmax(

Pk

Dk
0

)e2b(@Zk
2/2nk

2
#2m)Pk, which can

be rewritten using Eqs.~20! as

ZG5(
~Pk!

)
k51

Kmax S Dk
0

Pk
D 1

2p E dXkdYk

3e2~@Yk
2bPk/2nk

2
#1 iXkYk1 iXkZk2bmPk!. ~22!

Let (xk) and theKmax-dimensional vectorsẐ and â be, re-
spectively, xk5(

k851

Kmax sk8kXk8 , Ẑ5(Z,...,Z), and â

5(a,...,a). The right term can be factorized with the resu

ZG5
1

~2p!Kmax E dKmaxXdKmaxYe2 iXT~Y1Ẑ1â !

3 )
k51

Kmax

@11e2b~Yk
2/2nk

2
2 ixk/b2m!#Dk

0
. ~23!

The auxiliary variable number has been doubled due
the chosen energy form~18!. The interaction linearization is
ensured by theiXTZ term. The one-electron part~kinetic
energy–potential energy due to the attraction of the nucle!
Yk

2/(2nk
2) is separated from the electron-electron interact

part,2 i (xk /b). The electronic configuration (Pk) has been
replaced by a physically less transparent configurat
(Xk ,Yk). For the same reasons given earlier, the supersc
0 of the degeneracies is deleted. Note that an integral re
sentation ofZG can be found with any term of the form
PkZk

q , whereq is an even integer.
Before estimatingZG , it is convenient to change th

scale: Xk→ZXk /b and Yk→Yk /Z. Introducing (k
51,...,Kmax) Ik51, ek5(Z2Yk

2)/(2nk
2)2 i (xk /Z)2m, ebwk

51/(11ebek), and

Uk5Xk , k51,...,Kmax

Uk5Yk , k5Kmax11,...,2Kmax

@dU#5
dKmaxXdKmaxY

~2p/b!Kmax

S~U !5 iXTS Y1I1
a

ZD1 (
k51

Kmax

Dk~ek1wk!, ~24!

ZG readsZG5*@dU#e2bS(U). The saddle-point method i
used to evaluate it. We find thatZG'e2bVeff

with U0 satis-
fying (]S/]U)uU050, (]2S/]U2)uU05DS0, and

Veff5S~U0!1
Tr@ ln~DS0!#

2b
. ~25!

Neglecting the electrostatic interactions between bound
free electrons, elementary algebraic manipulations show
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3478 56G. FAUSSURIER, C. BLANCARD, AND A. DECOSTER
the variables (N̄k
0), more relevant than (Xk

0,Yk
0), are solu-

tions of a system of nonlinear coupled equations which
precisely the screened-hydrogenic average-atom equa
proposed by More and Zimmerman@15,18#

Zk5Z1ak2 (
k51

Kmax

skk8Pk8

E@~Pk!#5 (
k51

Kmax Zk
2

2nk
2 Pk

ek
05

]E

]Pk
U

~N̄
k
0!

2m

N̄k
05

Dk

11ebek
0 . ~26!

Going back to the real axis to calculate the true phys
quantities just changes the energy sign. As all formulas s
formally the same, the inverse analytic continuation will
omitted. The saddle-point equation interpretation is cle
The one-electron energies, which appear in the Fermi-D
factors, are the derivatives of the configuration energy@Eq.
~18!#. The same result is obtained in Mayer’s case. T
point is crucial to ensure the thermodynamic consistency
the model. More generally, equations (]S/]U)uU050 which
determine the saddle pointU0 are known to be the mean
field equations@25,34#. Straightforward manipulations show
thatS(U0), appearing in the effective grand potentialVeff, is
the grand potential corresponding to the free energy or
nally proposed by Zimmerman and More

S~U0!5 (
k51

Kmax S Zk
02

nk
2 N̄k

02mN̄k
0D

1kBT (
k51

Kmax

Dk$ f k
0 ln~ f k

0!1~12 f k
0!ln@~12 f k

0!#%.

~27!

We recognize the energy@Eq. ~18!# calculated with the popu
lations (N̄k

0) and the entropy of an ideal Fermi-Dirac g

@ f k
051/(11ebek

0
), Eq. ~26!#. TheDS0 matrix coefficients are

given in Table I.

TABLE I. Coefficients of the matrixDS0 for the SHM.

]2S

]Xk]Xk8
U
0

b

Z2 (
k951

Kmax

skk9sk8k9v̄ k9
2

]2S

]Xk]Yk8
U
0

iSdkk82
bZk8

0 skk8

nk8
2 v̄ k8

2 D
]2S

]Yk]Yk8
U
0

Z2dkk8

nk
2 SN̄k

02
bZk

02

nk
2 v̄ k

2D
e
ns

l
y

r.
c

s
f

i-

D. Evaluation of thermodynamic quantities

To calculate the mean occupancy, mean energy, mean
bital populations, and orbital occupation correlations,
must differentiate the grand potential with respect tom and
b. We therefore need to know the expressions of]N̄k

0/]m
and of ]N̄k

0/]b. It is worth introducing the two matrices
(vkk8) and (Vkk8). The matrixV is deduced from the con
figuration energy by performing second derivatives with
spect to populations (Vkk85]2E/@]Pk]Pk8#). The notation
Vkk8

0 , means thatVkk8 is calculated with the average-ato

configuration (N̄k
0). The matrixv is constructed fromV and

(N̄k
0)

vkk85bVkk8
0

1
dkk8
v̄k

2

v̄k
25

N̄k
0~Dk2N̄k

0!

Dk
. ~28!

These notations apply both to Mayer’s model and to
SHM. In Mayer’s case,V is identical to the electrostatic
interaction matrix@28#, as underlined by the notation. Usin
Eqs.~15! or ~26!, it can be shown that

]N̄k
0

]m
5b (

k851

Kmax

~v21!kk8

]N̄k
0

]b
5 (

k851

Kmax

~v21!kk8ek8
0 . ~29!

With the chosen conventions, the system of equations~29!
can be used for either the model is~Mayer or SHM!. We
now calculate mean occupancy, mean energy, orbital oc
pation numbers, and correlations. We have to different
the effective potentialVeff with respect tom. The first partS0

gives]S0/]m52(k51
KmaxN̄k

0. In order to treat the second co
rection toVeff, we have to consider a symmetric, definit
and positive matrixX(t) function of a parametert. From
d/dtTr$ ln@X(t)#%5Tr@X21(dX/dt)(t)# and by using Eqs.~2!,
~14!, ~25!, ~28!, and~29!, we find a closed form forN̄

¹k5
]

]N̄k
0

d N̄52
1

2 (
k,k851

Kmax

~v21!kk8 Tr@~DS0!21¹kDS0#

N̄5 (
k51

Kmax

N̄k
01d N̄ . ~30!

The only difference between the two models will be in t
calculation of the coefficients of the matrixDS0 @Eq. ~17! for
Mayer’s model and Table I for the SHM#. The expression of
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TABLE II. Gradient of DS0 with respect to average-atom populations (N̄l
0) for the Mayer’s model and

the SHM.

]v̄ k
2

]N̄l
0 dlkS12

2N̄l
0

Dl
D

Mayer ]~DS0!kk8

]N̄l
0

dlkS12
2N̄l

0

Dl
DbVkk8

]

]N̄l
0 F ]2S

]Xk]Xk8
U
0
G b

Z2 sklsk8lS12
2N̄l

0

Dl
D

MHE ]

]N̄l
0 F ]2S

]Xk]Yk8
U
0
G 2ibskk8

nk8
2 FZl

0S12
2N̄l

0

Dl
D2v̄k8

2 sk8lG
]

]N̄l
0 F ]2S

]Yk]Yk8
U
0
G bZ2dkk8

nk
2 Fdkl

b
2

Zk
02

nk
2 S12

2N̄l
0

Dl
D1 2Zk

0v̄k
2

nk
2 sklG
-
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its gradient¹kDS0 for both models is in Table II. The cal
culation of the mean energy proceeds as above and we

Ē5E@~N̄k
0!#1md N̄1d Ē

d Ē5
1

2 (
k,k851

Kmax

~v21!kk8ek8
0 Tr@~DS0!21¹kDS0#. ~31!

The orbital occupation number and correlation are usu
obtained by differentiation of a generating functio
@21,26,30# with respect to a source term. In our case, we m
introduce a chemical potentialmk for each orbitalk. The
quantities of interest are then obtained using

N̄k52
]V

]mk
U

mk5m

DNkDNk852
1

b

]2V

]mk]mk8
U

mk5mk85m

~32!

with the result

N̄k5N̄k
01d N̄k

d N̄k
52

1

2 (
k851

Kmax

~v21!kk8Tr„~DS0!21¹k8DS0
…

DNkDNk85~v21!kk81correction. ~33!

The corrective term can be obtained by the same techn
as above.

E. Integer charge stage splitting

The aim of this section is to compute the abundance o
particular integer charge state and to find its mean orb
population numbers from minor manipulations of the gra
canonical partition functionZG . If the electrostatic interac
tions among the bound electrons are neglected, one is d
nd

ly

y

ue

a
al
d

al-

ing with an ideal Fermi-Dirac gas. The exact partition fun
tion ZG of this system is known in closed form

ZG5(
~Pk!

(
k51

Kmax S Dk

Pk
De2b~ek2m!Pk ~34!

which factorizes asZG5Pk51
Kmax@11e2b(ek2m)#Dk. In the

present case, the internal partition functionZG
N of an

N-electron charge state isZG
N5( (Pk),Y(k51

Kmax(Pk

Dk)e2b(ek2m)Pk.

The symbolY indicates that the summation runs throu
those configurations that satisfy the constraint(k51

KmaxPk5N.
We now face the difficulties generated by this constra
which prevents the factorization ofZG @20,22#. We recall
that the difference between the canonical description and
grand canonical description are fluctuations ofN̄, which are
forbidden in the canonical case. The factorization of t
grand canonical partition function requires the use of
Lagrange multiplierm, which is founda posteriori from the
equationN̄5(1/ZG)„( (Pk)(k51

KmaxPk(Pk

Dk)e2b(ek2m)Pk
…. We now

keep this same idea to deduceZG
N from ZG . The trick is to

employ the identity

1

2ip E
2 ip1a0

ip1a0
dt etN5dN,0 , ~35!

whereN is an integer,a0 a real, anddN,0 is Kronecker sym-
bol. So, inserting this formula in Eq.~34!, we find

ZG
N5

1

2ip E
2 ip1a0

ip1a0
dt etN )

k51

Kmax

@11e2te2b~ek2m!#Dk.

~36!

To go from ZG to ZG
N , we substitutem for m2t/b and

integrate the modified partition functionZG(t) for each value
of N. In order to understand more precisely the significat
of Eq. ~36!, we change the variable of integration introducin
z: z5e2t. In the complex plane, we find
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ZG
N5

1

2ip R dz

zN11 )
k51

Kmax

@11ze2b~ek2m!#Dk ~37!

or

ZG~z!5 )
k51

Kmax

@11ze2b~ek2m!#Dk

ZG
N5

1

N!

dNZG

dzN U
z50

. ~38!

This result is quite obvious becauseZG
N is a polynomial

of degreeN with respect to the quantities@e2b(ek2m)#.
ZG

N is theNth-order term of the Taylor expansion ofZG(z)
around the origin. For Mayer’s model or the SHM, we ha
for ZG

N

th

es
id
n
ra

d
a
e
as

ic

n
o-
ZG
N5

1

2ip E
ip2a0

ip1a0
dt etNe2bVeff~ t !. ~39!

The fraction~percent! F(Z2N) of N-electron species@charge
state (Z2N)# is then straightforward to compute since

F~Z2N!5
ZG

N

ZG
. ~40!

In the same spirit we have direct access to the m
orbital population numbers ofN-electron ions. It is a
simple application of the general formula:N̄k

N

5(1/bZG
N)(]ZG

N/]mk)umk5m . For an ideal Fermi-Dirac gas
we obtain
N̄k
N5

1

2ip E
ip2a0

ip1a0
dt etN

Dk

11eteb~ek2m! )
k51

Kmax

@11e2te2b~ek2m!#Dk

ZG
N ~41!
e

it
ter-

on-

tial
ra-
ns

ti-
to

ge-
ix
and for any other case

N̄k
N5

2
1

2ip E
ip2a0

ip1a0
dt etN

]Veff

]mk
U

mk5m

e2bVeff~ t !

ZG
N . ~42!

Those integrals can be evaluated numerically or using
saddle-point method.

III. APPROXIMATE DEVELOPMENTS USING THE
CLASSICAL THEORY OF FLUCTUATIONS

The former developments are of limited practical inter
for in-line calculations because we need to handle mult
mensional integrals where the explicit orbital populatio
(Pk) are replaced with abstract variables. We could gene
ize this approach to calculate the thermodynamic mean
any physical quantity. The saddle-point method offers
valuable estimate of such integrals but finding the sad
point requires the time consuming solution of nonline
coupled equations. An alternative is to use of a simplifi
version of the grand canonical probability density. The cl
sical theory of fluctuations@22# is well suited in this case to
tackle this problem. We just recall the principal steps wh
have been presented in detail elsewhere@28,31,35#. The first
step is to replace the discrete summation~1! by a multidi-
mensional integral. In doing so, the (Pk) are preferred to the
aforementioned auxiliary variables. They are supposed to
real and take all possible values from2` to 1`. Starting
from Eq.~1!, writing the statistical weight of a configuratio
aseS/kB, and using Stirling’s formula to compute each bin
mial factor we obtain S52kB(k51

Kmax@Pkln(Pk /Dk)1(Dk

2Pk)ln(@Dk2Pk#/Dk)# and
e

t
i-
s
l-
of
a
le
r
d
-

h

be

ZG}E dKmaxPe2b$E@~Pk!#2TS2m(
k51

KmaxPk%

5E dKmaxPe2bV@~Pk!#, ~43!

where } means ‘‘up to a normalizing factor.’’ The saddl
point is then used to approximate the integral. SinceV is the
effective potential without the traditional corrective terms,
reaches precisely its minimum for the saddle-point de
mined by the average-atom equations@]V/]Pku(N̄

k
0)50#. As

thermodynamic equilibrium is assumed, we just have to c
sider a second-order Taylor expansion ofV. Let us introduce
DPk5Pk2N̄k

0 andvkk85b(]2V)/(]Pk]Pk8)u(N̄k
0) ; elemen-

tary algebraic manipulations show thatvkk85(Vkk8 /kBT)
1(dkk8 /v̄k

2) with v̄k
25@N̄k

0(Dk2N̄k
0)/Dk#. The symmetric,

definite, positive matrixv is identical to the previous one
@Eq. ~28!#. We deduce that the probabilitydP ~normalized to
unity! of an electronic configuration (Pk) reduces to

dP5S det~v!

~2p!KmaxD 1/2

dKmaxDPe2~1/2!DPTvDP. ~44!

Since the corrective terms in the effective grand poten
have implicitly been neglected, the average-atom configu
tion (N̄k

0) is precisely equal to the mean orbital occupatio
(N̄k) and from nowN̄k

05N̄k5 P̄k . Equation~44! is of con-
siderable interest for in-line calculations, especially in es
mating the population distribution around their averages
improve the spectral opacity constructed with the avera
atom configuration only. Introducing the correlation matr
C defined byCkk85DPkDPk8, it is easy to show@22# that
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Ckk85(v21)kk8 . The matrixv is not diagonal with respec
to the occupation numbers and we see clearly that the e
trostatic interactions (Vkk8) induce correlations betwee
them. Let us discuss the expression of the correlation ma
coefficients with respect to temperature. At high temperat
b tends to zero:

vkk8 '
kBT→`

dkk8
v̄k

2 →Ckk8 '
kBT→`

dkk8v̄k
2.

Correlations then become negligible and we have an id
Fermi-Dirac gas. On the contrary, correlations dominate
low temperature:

vkk8 '
kBT→0

bVkk8→Ckk8 '
kBT→0

kBT~V21!kk8 .

Each coefficient ofC varies linearly withkBT near absolute
zero. Matter tends to freeze into the fundamental configu
tion at the chosen density. Finally, the correlation mat
coefficients depend explicitly on (v̄k

2) and fluctuations are
maximal for half-occupied orbitals.

This correlation matrixC plays a crucial role in calculat
ing the fluctuations a physical quantityz around its thermo-
dynamic meanz̄ @ z̄'z(0)#. Since thermodynamic equilib
rium is assumed, these fluctuations are small@22# and the
variancesz

2 of z can be found rapidly. Starting from

z@~DPk!#5z~0!1 (
k51

Kmax ]z

]DPk
U

0

DPk1•••

andsz
25@z@(DPk)#2z(0)#2, sz

2 is approximately given by:

sz
2' (

k,k851

Kmax ]z

]DPk
U

0

]z

]DPk8
U

0

Ckk8 .

For example, let us choosez to be the ionization:z5Z
2(k51

KmaxPk . z~0! is equal toZ̄ and the ionization variance

s
Z̄

2
to

s
Z̄

2
5 (

k,k851

Kmax

Ckk8 . ~45!

If we neglect correlations, which is justified at high tempe
ture, we have an independent electron gas. Introducingf k

5 P̄k /Dk , we then obtain the variance using the binom
distributions

Z̄

2
'(k51

KmaxDkfk(12fk).
In expression~44! of dP, it is possible to reproduce th

integer charge stage splitting. A very fast and simple eva
ation of the detailed ionization stage accounting is possi
Moreover, the thermodynamic mean and the variance of
physical quantity can be computed with an explicit referen
to a particular integer ion stage. The densitydP is an ap-
proximation of the true density probability~or density ma-
trix!. In the evaluation ofZG , the ion charges are betweenZ
and Z2(k51

KmaxDk . It seems therefore natural to consider t

new probability densitydP̃
c-

ix
e,

al
t

a-

-

l

-
e.
y

e

dP̃5(
Z8

1

Z dKmaxDPe2~1/2!DPTvDPdS (
k51

Kmax

DPk2DZ8D ,

~46!

with (k51
KmaxPk1Z85Z and (k51

KmaxP̄k1Z̄5Z. To achieve that
goal, a constraint is introduced in the partition function. T
ion orbital populations are fractional but their sum is nec
sarily integer.DZ8 meansZ̄2Z8. NormalizingdP̃ to unity
and using the Fourier transformation of the Dirac distributi
to reduce the Gaussian integral on the populations,Z is equal
to

Z5(
Z8

S ~2p!Kmax

det~v! D 1/2 e21/2~DZ8/s Z̄!2

A2ps
Z̄

2
. ~47!

The ion fraction expressionFZ8 of the charge stateZ8 is

FZ85
ZZ8

Z 5
e21/2~DZ8/s Z̄!2

(Z8e
21/2~DZ8/s Z̄!2 . ~48!

The physical meaning of Eq.~48! is simply the quotient of
the internal partition functionZZ8 of the charge stateZ8 by
the total partition functionZ. The classical theory of fluctua
tions allows a fast evaluation of this term. It can be sho
@28# that Eq.~48! is closely linked to the couple of Eqs.~39!
and ~40!. This result is valid for the screened-hydrogen
average-atom model or any average-atom model whe
second-order Taylor expansion in the occupation number

performed. The mean orbital populations (P̄k
Z8) for an inte-

ger charge stateZ8 can be computed as well. It is very im
portant to remark that the positivity of these populations
not granted for ion stages far from the average atom. Si
larly, the population of a nearly complete orbitalk0 can ex-
ceed the degeneracyDk0

. By definition

P̄k5(
Z8
FZ8P̄k

Z8

P̄k
Z85

1

ZZ8 E dKmaxDPe2~1/2!DPTvDP

3dS (
k851

Kmax

DPk82DZ8D Pk , ~49!

and we find after some basic calculations that

P̄k
Z85 P̄k1

DZ8ak

s
Z̄

2 ~50!

with ak5(
k851

Kmax (v21)kk8 @see Eq.~28!#. The computations are
reasonably accurate for ion stages close to the average-

charge. Note that the sum of (P̄k
Z8) is equal to the charge

state (Z2Z8). The thermodynamic meanz̄Z8 of a physical
quantityz with respect to the integer ion stageZ8 is given by
the expression
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z̄Z85 z̄1 (
k51

Kmax ]z

]Pk
U

0

DZ8ak

s
Z̄

2 .

IV. NUMERICAL APPLICATIONS

To illustrate the usefulness of the formulas establish
above, we have chosen the screened-hydrogenic ave
atom to test some of them, and the classical theory of fl
tuations to study statistical properties of LTE plasmas.
use the More’s screened-hydrogenic model~MSHM! @19#
degenerate with respect to the orbital quantum numberl , and
a new one~NSHM as new screened-hydrogenic model! @28#
wherel is explicitly considered. We restrict ourselves to t
nonrelativistic regime. The pressure ionization model tak
into account plasma effects is the version proposed by Z
merman and More@18# with aZM and bZM equal, respec-
tively, to 3 and 1 in order to match zero-temperatu
Thomas-Fermi ionization at high density (r5`) and solid
density (r5r0).

The first application of our method is the calculation
the average ionization of a LTE plasma. The fluctuatio
around average ionizationZ̄ are estimated, drawing the im
portance of correlations between orbital occupation numb
The fast estimate of the integer charge stage distribution
LTE plasma, which is a direct consequence of the gene
zation of the screened-hydrogenic average-atom model,
never been tackled to our knowledge, except through
standard Saha-Boltzmann equations, or methods restin
binomial manipulations@36,37#. The drawback of the firs
one is the inherent arbitrary selection of configurations
calculate the internal partition function of a particular io
stage and its problematic use at high density@15#. The dis-

FIG. 1. Variations with temperature of the average ionization~a!
and of the standard deviation~b! of an aluminum plasma, for a
density equal to 1024 g/cm3. The MSHM and the NSHM~see text!
are considered. In~b!, the orbitals 3s and 3p are clearly distinct.
d
ge

c-
e

g
-

s

s.
a

li-
as
e
on

o

advantage of the second one is the absence of correla
which can play an important role. We shall point out t
influence of temperature, density, and principal quant
number when truncating the partition function on the fra
tions of the various ionization stages.

A. Average and fluctuation ionization

The variations of the average ionizationZ̄ and the stan-
dard deviation of ionizations Z̄ with temperature of a LTE
aluminum plasma are given in Fig. 1. A low density (r
51024 g/cm3) has been chosen in order to reduce press
ionization and to show atomic effects that a model degen
ate with respect to the orbital quantum number ignores. B
models give the same results as far asZ̄ is concerned excep
near 2 eV@Fig. 1~a!#. The ionization plateau, only present o
the NSHM curve, is due to the ionization of the 3p orbital.
More’s model is not able to predict it because 3s and 3p
orbitals are not distinguished. This effect is far more visib
in Fig. 1~b!. When the temperature is not too low, each mi
mum ofs Z̄ means that a shell gets empty. So, on the NSH
curve, the plateaus near 2 eV and 6 eV correspond, res
tively, to the 3p and 3s orbitals. At high temperature, bot
models give the same results. The energy splitting of orbi
with same principal quantum number is small compared
kBT so that these orbitals are populated according to th
statistical weights. Since the electrostatic interactions
tween the electrons inside the atom become much less
kBT, we have an independent particle gas in this tempera
domain.

Ionization standard deviation gives valuable physical
formations concerning the integer charge stage distribu
around the average atom, and also on the occupancy or
numbers. This point is quite clear when the correlation m
trix v expression is considered. To be more precise, le
look at Fig. 2 where~i! we have reproduced the NSHM curv
~with correlations! of Fig. 1~b!, ~ii ! we have included its
uncorrelated counterpart~v is diagonal!. The temperature

FIG. 2. Comparison between the standard deviation of ion
tion with ~a! and without~b! correlations of an aluminum plasma a
a function of temperature for a density of 1024 g/cm3.
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TABLE III. Integer charge state distribution of an aluminum plasma~T540 eV, r51.3531022 g/cm3!
and an iron plasma~T525 eV, r51.3531022 g/cm3!. We have emboldened the dominant charge state

Average ionization (Z̄)
Ionization standard deviation (s Z̄)

Aluminum
7.036
0.849

Iron
7.227
0.888

Charge state Fraction~%!

4 7.8731022 6.1131022

5 2.65 1.94
6 22.33 17.30
7 46.95 43.48
8 24.65 30.75
9 3.23 6.12
10 0.11 0.34
g
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nce

rge
u-
and
i-
domain ranges from very low temperatures 1025 eV to
104 eV. At sufficiently high temperature, it is not surprisin
to see that the two curves are identical. The main differen
are for intermediate and low temperatures. At zero temp
ture, the system lies in its ground state configuration
1024 g/cm3. So, the absence of interactions between
electrons keepss Z̄ finite, except in situations where all th
shells are either empty or full. Note that due to the press
ionization model,s Z̄ tends to 1.004 instead ofA5/6 ~0.913,
one electron in the 3p orbital!. s Z̄ without correlations is
always greater thans Z̄ with correlations. The difference ca
exceed a factor 10. Neglecting correlations in the calcula
of a thermodynamic average amounts to use a partition fu
tion in which the configuration energies are linearized w
respect to populations around the average-atom configura
~or another reference point!. Expansion up to second order
populations is required to introduce the electrostatic inter
es
a-
t
e

re

n
c-

on

c-

tion termsVi j close to the average electrostatic interacti
potentials between electrons. The correlations come from
Vi j which are positive since they represent the repulsive e
trostatic interaction between electronsi and j . So, neglecting
the Vi j amounts to underestimate the configuration ene
and, hence, to overestimate each Boltzmann factor in
partition function. A far more important number of configu
rations around the average-atom configuration would t
contribute and increase the dispersion around the refere
point.

B. Detailed ionization stage accounting

In this section, we study the estimate of the integer cha
state distribution in the plasma. We first consider the infl
ence of correlations and second the role of temperature
maximum principal quantum number, in the case of alum
FIG. 3. Comparison of the integer charge state distributions with and without correlations for two plasmas~a! aluminum~T540 eV,
r51.3531022 g/cm3! and ~b! iron ~T525 eV, r58.1031023 g/cm3!.
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FIG. 4. Comparison of the integer charge state distributions with and without correlations for an iron plasma (r5831023 g/cm3) for
four temperatures 25 eV~a!, 50 eV ~b!, 100 eV~c!, and 300 eV~d!.
ou
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Fig.
ge
num and iron. This gives us the opportunity to compare
formalism to more detailed calculations@38,39#.

In Table III, the ion fractions estimated from Eq.~48!
for two LTE plasmas of aluminum@17,39,40# ~T540 eV,
r51.3531022 g/cm3) and iron @41# ~T525 eV,
r5831023 g/cm3! are given. For the case considered, on
a few charge states dominate in the plasma. In both cases
distributions are quite similar and we find only three ma
ion species. In order to see the influence of correlations,
plot the former distributions where correlations are includ
together with the uncorrelated ones. The results are displa
in Fig. 3. As expected, the distributions without correlatio
have the largest variance. Due to the contributions of
r

the

e
d
ed
s
e

charge states in the wings, the dominant charge state frac
can be reduced by a factor two. This is understood in te
of ionization standard deviation. We recall the values
these for the aluminum and iron plasmas respectively: w
out correlations we find 1.351 and 1.634, and with corre
tions 0.849 and 0.888. So there is a factor of 2 between
two situations. The differences depend on the element
the thermodynamic conditions. In particular, an interest
phenomenon can be observed in the iron case. The in
density (r5831023 g/cm3) is kept but three other tempera
tures are considered: 50 eV, 100 eV, and 300 eV. We ad
these three examples the 25 eV plasma and plot them in
4. The curves with and without correlations tend to mer



a

a
e
n
e

on
n

an
rg
ra

er

is
ed
e

of
-
es-

the

eir
le,
tion

il-

ble
-
c-
m
el.

de-
er-
oni-
s
y is

ith
of

on

ma
ic

56 3485STATISTICAL MECHANICS OF HIGHLY CHARGED ION . . .
when the temperature is high enough. The calculations
equivalent at 100 eV because theM shell is just becoming
empty. Examination of Fig. 5 is instructive enough. Even
200 eV we are below the temperature edge because thL
shell is half-empty and the standard deviations with a
without correlations are notably different, explaining the d
viations between the two curves of Fig. 6.

Before concluding this paper, we compare our model c
cerning the aluminum plasma to more elaborate calculatio
From a detailed atomic physics data base, Abdallah
Clark @38# have computed the evolution of the integer cha
state distribution of a LTE aluminum plasma with tempe
ture from 20 eV to 100 eV (r51.3531022 g/cm3). In Fig. 7

FIG. 5. Comparison of the ionization standard deviations w
~a! and without~b! correlations of an iron plasma as a function
temperature (r5831023 g/cm3).

FIG. 6. Comparison of the integer charge state distributi
with and without correlations for an iron plasma~T5200 eV,
r5831023 g/cm3!.
re

t

d
-

-
s.
d

e
-

our calculations are compared to Fig. 2 of Ref.@39#. At a
given temperature, the NSHM predicts an ionization high
than that obtained by Kilcreaseet al. @39#: the NSHM
curve is shifted near the left by about 6 eV. Again in th
model, the dispersion of the maxima is more pronounc
than that in Ref.@39#. It is especially the case for the charg
states nearn shell closure~@He#- and @Li #-like ions for the
K shell, @O#-, @F#-, and @Ne#-like ions for L shell!. The un-
certainty may arise from~i! the screening constants,~ii ! the
statistical method we used,~iii ! the pressure ionization
model, and~iv! the maximum quantum numbernmax chosen
to truncate the partition function. Since the calculations
Abdallah and Clark@38# did not account for pressure ioniza
tion, we performed a new set of calculations neglecting pr
sure ionization~so aZM5bZM50) and changingnmax. The
results for the four cases are plotted in Fig. 8. We see that
integer charge state distribution depends strongly onnmax.
Whennmax increases, the excited configurations, due to th
statistical weight, tend to play an increasingly important ro
even the most improbable ones. They make the parti
function diverge whennmax goes to infinity. This effect tends
to flatten the arches. We note that the distribution of K
creaseet al. lies between the graphsnmax54 and nmax56.
With the ionization pressure model, the distribution is sta
and independent ofnmax. We know that this is the formula
tion which allows a physical truncation of the partition fun
tion, bound electrons going continuously into the continuu
within a thermodynamically consistent average-atom mod

V. CONCLUSION AND PERSPECTIVES

The screened-hydrogenic average-atom model used to
scribe highly charged ions in LTE plasmas is well und
stood and thermodynamically consistent. The grand can
cal internal partition functionZG of the bound electrons ha
an exact integral representation when the total ion energ
expresed using the screened-hydrogenic model.ZG is esti-

s

FIG. 7. Integer charge state distribution of an aluminum plas
(r51.3531022 g/cm3). We adopt the notations proper to atom
structure to label the different ion stages. For example,@F# is the
fluorinelike charge state.
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FIG. 8. Integer charge state distribution of an aluminum plasma (r51.3531022 g/cm3). We vary the maximum principal quantum
numbernmax: ~a! nmax510, ~b! nmax58, ~c! nmax56, and~d! nmax54.
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mated with the saddle-point method. Straightforward diffe
entiations with respect to the chemical potentialm and the
inverse temperatureb leads to the mean bound electron num
ber and to the mean electronic energy. The equations wh
determine the saddle point are identical to the traditional
of nonlinear coupled equations dealing with average-ato
populations (P̄k) and Fermi-Dirac statistics. To first order
the electron populations are equal to the thermodynam
mean orbital populations. A method, which can be extend
to any average-atom model, for calculating the charge st
-

-
ch
et
m

ic
d
te

distribution from ZG is proposed. The classical theory o
fluctuations has been used in order to have more prac
formulas for in-line calculations. The rapid estimate of t
mean and variance of any physical quantityz, explicit func-
tion of the orbital occupation numbers, becomes possi
This formalism has been applied using More’s screened
drogenic model and the new screened-hydrogenic mode

The authors thank Drs. P. Dallot and F. Perrot for th
comments and suggestions concerning the final form of
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